
Chemlogic:

A Logic Programming Computer Chemistry System

Nicholas Paun

∗ Abstract

Chemlogic is a logic program for balancing chemical equations and converting chemical

formulas to and from chemical names, using a database of chemical element and polyatomic

group information, a set of grammars, and a linear equation solver. Chemlogic can detect

and provide guidance for resolving syntax and other errors and has a user-friendly Web

interface.[6]

Background

In high school Chemistry, students learn to write formulas and names for chemical

compounds and to write and balance chemical equations. These concepts are simple, but

implementing a program to do this was an interesting task. Algorithms were researched,

adapted to chemistry problems and implemented in Prolog to create a program that could

be useful in education.

Design and Implementation

User input is parsed into a form that can be easily manipulated and transformed. A

parser recognizes a formal grammar describing valid user input. In Prolog, parsers are im-

plemented using DCGs (De�nite Clause Grammars), which provide a simpli�ed syntax for

creating logical clauses that process a grammar using di�erence lists, an e�cient represen-

tation (e.g. concatenation in O(1)).[4]

2014-04-30 � Nicholas Paun: Chemlogic � 1 of 5



Di�erence lists consist of an instantiated part (the head) and an uninstantiated part (the

tail), which is always paired with the rest of the lists. Di�erence lists are a complex concept

and are usually abstracted away by DCG syntax.

In DCG clauses, the head of a grammatical rule is uni�ed with the input and any re-

maining data is uni�ed with the tail, which is passed to the next clause until the parsing is

completed. If any clause fails, Prolog will backtrack to �nd another clause that can satisfy

the grammar. If no clause is found, then the parsing fails.

To make a useful program it is not enough to simply decide whether or not a given input

conforms to a grammar � internal representations must be created. Commonly, Abstract

Syntax Trees are used for this purpose. Chemlogic uses a pseudo-AST to record the structure

of an equation, as well as lists containing useful information (e.g. the elements contained in

an equation). DCGs provide extra arguments for this purpose.

Balancing of chemical equations is usually done by inspection.[3] This process cannot

easily be used in a program because it is unsystematic: as coe�cients may be corrected again

during the balancing, the order and steps performed may vary from equation to equation.

Chemlogic uses an elegant process, using a system of linear equations. One linear equation

is created for every element in a chemical equation, with the number of occurrences of the

element in each formula representing a coe�cient, multiplied by an unknown (the chemical

equation coe�cient).[5] To make the system solvable, the �rst coe�cient is set to 1. The

solution is always reduced to lowest whole number terms.

This process can be made even simpler to program by creating a homogeneous linear

system, where the terms representing reactants have positive sign and terms representing

products have negative sign. These equations are all equal to 0. These systems are commonly

solved by converting them to a matrix and applying Gaussian elimination.[2]

In Chemlogic, a matrix is produced from structures created by the parser and lookup

2014-04-30 � Nicholas Paun: Chemlogic � 2 of 5



tables. The matrix is converted into a system of linear equations, which is then provided

to the built-in CLP(q) facility, which can solve constraints over rational numbers.[1] This

process is less e�cient, but allows for code reuse, saving programmer work.

Syntax errors cannot simply cause a program to fail � clear identi�cation and expla-

nation of an error is necessary. When a predicate that must succeed for a given input to

be valid fails, a syntax error exception is thrown, containing a code name for the error and

whatever remains in the tail (what could not be parsed). The exception aborts the execution

of the program and is then passed to the error handling module. It �rst attempts to localize

the error by highlighting only the problematic part within the tail. Di�erent rules are used

depending on the type of the �rst character (e.g. an invalid letter suggests a chemistry

mistake, while an invalid symbol suggests a typo). The combination of an error code and

character type is used to �nd the correct error message to provide to the user.

Multiple interfaces are supported in Chemlogic. Currently, command-line and Web

interfaces have been implemented. In order to show correct symbols and formatting (e.g.

subscripts) in each interface, there is an output formatting module that allows each parser

to automatically use the correct symbols. The error handling module re-throws its syntax

errors to a simple error handler for each interface.

Metaprogramming is an excellent feature in Prolog. Metaprogramming allows

a program to write or manipulate parts of itself. An important aspect of metaprogramming

is the ability to manipulate code as a data structure � this is used to translate simple facts

from a database into various grammatical rules.

Prolog also allows a programmer to de�ne new operators that extend the programming

language and provide simple syntax for repetitive tasks. Chemlogic de�nes an operator that

2014-04-30 � Nicholas Paun: Chemlogic � 3 of 5



throws a syntax error, if a predicate fails, and another operator that catches syntax errors

and runs the correct handler for the current interface. De�ning operators makes Chemlogic's

code easier to read and understand.

Chemlogic also implements a very simple Domain Speci�c Language (DSL) on top of

Prolog, using metaprogramming techniques. This DSL is a proof-of-concept and consists of

three rules that provide simple syntax for a user to query Chemlogic. DSL clauses can be

composed into very simple programs and the full features of Prolog can be combined with

DSL rules, if needed.

Discussion

Performance was analyzed in Chemlogic by counting inferences (provided by time/1)

used by di�erent algorithms for various problem sizes. Algorithms were compared on their

�xed inferences (intercept), inferences per item (slope) and to ensure that their complexities

were not exponential.

The time taken by the algorithms used in Chemlogic could not be analyzed because the

di�erence between the performance of algorithms on typical problem sizes was immeasurably

small.

Further research and development� It would be interesting to compare the balanc-

ing algorithm used, with one that attempts to balance equations by trial-and-error. A brute-

force algorithm is logically unsatisfying and its di�culty increases exponentially (O(nm)).

The time taken by repeated trials may be unnoticeable on new computers, however.

Currently, Chemlogic attempts to distinguish sub-classes of errors to make error messages

more speci�c. A topic for future development would be to substitute pieces of information

from incorrect input into messages, allowing the program to explain exactly what is wrong

with the input, as opposed to a general error message.

2014-04-30 � Nicholas Paun: Chemlogic � 4 of 5



The program could be extended to add more chemistry features, including: structural

formulas and the names of more complex organic compounds, stoichiometric calculations

and completion of simple reaction types (a very complex task).

Conclusions

Prolog was chosen as the language for Chemlogic because it has many features that are

useful for implementing this type of program.

Prolog includes support for DCGs, which allow a programmer to implement a parser

using a very simple syntax, without requiring manual parser writing. Using DCGs, it is easy

to write grammatical rules, test them and add more types of input. Chemlogic used many

advanced features of DCGs and their underlying abstractions.

SWI-Prolog's CLP(q) facility made solving systems of linear equations extremely simple.

Using a logic programming language, such as Prolog, enables the programmer to describe

the results, instead of the process.[7] In practice, writing in Prolog avoids the need for manual

programming of loops and other imperative constructs, most often resulting in a well-written,

succinct solution requiring few lines of code.

Prolog also has very strong support for metaprogramming, which was used in a few places

in Chemlogic, where the amount of boilerplate code needed was reduced, making code easier

to read.

Chemlogic was successfully implemented using Prolog, in a well-designed and mod-

ular structure, and could balance chemical equations, convert names to formulas and vice

versa.

2014-04-30 � Nicholas Paun: Chemlogic � 5 of 5



Acknowledgments

I would like to thank the many people who gave advice and helped with the project.

I am particularly grateful for the valuable assistance provided by Dr. Peter Tchir, my

Physics, Chemistry and, now, Computer Science teacher. His help and advice, especially

with algorithms and his support for my Computer Science projects helped make this program

possible.

I would also like to thank Mr. Jason Peil for his assistance in designing and printing the

display and Mr. Greg Osadchuk for his input and assistance regarding the visual presenta-

tion.

Obtaining Chemlogic / Contact

Nicholas Paun <np@icebergsystems.ca>

Chemlogic is open-source software. A copy of the program and additional information is

available at http://icebergsys.ca/chemlogic

References

[1] C. Holzbaur. OEFAI clp(q,r) Manual Rev. 1.3.2. 1995.

[2] Nayuki Minase. Chemical equation balancer (JavaScript), 2013. URL: http://nayuki.

eigenstate.org/page/chemical-equation-balancer-javascript.

[3] L. Sandner. BC Science 10. McGraw-Hill Ryerson, 2008. URL: http://books.google.

ca/books?id=vEjRtgAACAAJ.

[4] Markus Triska. DCG Primer. URL: http://www.logic.at/prolog/dcg.html.

2014-04-30 � Nicholas Paun: Chemlogic � i of ii

np@icebergsystems.ca
http://icebergsys.ca/chemlogic
http://nayuki.eigenstate.org/page/chemical-equation-balancer-javascript
http://nayuki.eigenstate.org/page/chemical-equation-balancer-javascript
http://books.google.ca/books?id=vEjRtgAACAAJ
http://books.google.ca/books?id=vEjRtgAACAAJ
http://www.logic.at/prolog/dcg.html


[5] Mark E. Tuckerman. Methods of balancing chemical equations. 2011. URL: http:

//www.nyu.edu/classes/tuckerman/adv.chem/lectures/lecture_2/node3.html.

[6] Jan Wielemaker, Zhisheng Huang, and Lourens van der Meij. SWI-Prolog and the Web.

Theory and Practice of Logic Programming, 8(3):363�392, 2008.

[7] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. SWI-Prolog. The-

ory and Practice of Logic Programming, 12(1-2):67�96, 2012.

2014-04-30 � Nicholas Paun: Chemlogic � ii of ii

http://www.nyu.edu/classes/tuckerman/adv.chem/lectures/lecture_2/node3.html
http://www.nyu.edu/classes/tuckerman/adv.chem/lectures/lecture_2/node3.html

